Source code for daplis_rtp.gui.plot_figure_MZI

"""Module for plotting photon count from two chosen pixel in real time.

Unpacks the binary data, finds the two pixels requested and plots the
number of photons registered by the two pixels. x-axis limits are given 
by the slider, upper y-axis limit is set as maximum of the two counts
plus 10 percent.

"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_qt5agg import (
    FigureCanvasQTAgg as FigureCanvas,
)
from matplotlib.backends.backend_qt5agg import (
    NavigationToolbar2QT as NavigationToolbar,
)
from matplotlib.figure import Figure
from PyQt5.QtWidgets import QVBoxLayout, QWidget


[docs] class PltCanvas_MZI(QWidget):
[docs] def __init__(self, parent=None, width=7, height=4, dpi=100): """Creation of the figure widget. The widget is created with the bar with options. Parameters ---------- width : int, optional Figure widget width, by default 7. height : int, optional Figure widget height, by default 4. dpi : int, optional Figure widget dpi, by default 100. """ super(PltCanvas_MZI, self).__init__(parent) # For 'dark_background' style plt.style.use("dark_background") # a figure instance to plot on self.figure = Figure(figsize=(width, height), dpi=100) self.canvas = FigureCanvas(self.figure) self.toolbar = NavigationToolbar(self.canvas, self) self.ax = self.figure.add_subplot(111) self.ax2 = self.ax.twinx() self.figure.subplots_adjust( left=0.15, right=0.9, top=0.945, bottom=0.12 ) # creating a Vertical Box layout self.layout = QVBoxLayout(self) self.layout.addWidget(self.canvas) self.layout.addWidget(self.toolbar) self.setLayout(self.layout) self.setplotparameters() # Upper ylim for the plot self.upper_ylim = 0
[docs] def setplotparameters(self, fontsize: int = 16): """Figure parameters manipulation. Set font size, axes labels. Set the width and orientation of the axes ticks. """ plt.rcParams.update({"font.size": fontsize}) self.ax.set_xlabel("Pixel (-)", fontsize=fontsize) self.ax.set_ylabel("# of timestamps (-)", fontsize=fontsize) self.ax.tick_params(which="both", width=2, direction="in") self.ax.tick_params( which="major", length=7, direction="in", labelsize=fontsize ) self.ax.tick_params( which="minor", length=4, direction="in", labelsize=fontsize ) self.ax2.tick_params( which="major", length=7, direction="in", labelsize=fontsize ) self.ax2.tick_params( which="minor", length=4, direction="in", labelsize=fontsize ) self.ax.yaxis.set_ticks_position("both") self.ax.xaxis.set_ticks_position("both") for axis in ["top", "bottom", "left", "right"]: self.ax.spines[axis].set_linewidth(2)
[docs] def setPlotData_MZI(self, xdataplot, yplotdata1, yplotdata2, xLim, yLim): """Plot data. Plot the provided data while following the state of the axis limits and the switch for plotting vertical lines at positions 64, 128, and 192. Parameters ---------- xdataplot : array Data for the x-axis: pixel numbers. yplotdata : array-like Data for the y-axis: number of timestamps. xLim : list Limits for the x-axis. grouping : bool, optional Switch for plotting vertical lines at positiong 64, 128, and 192, by default False. """ # self.ax.cla() self.ax.plot(xdataplot, yplotdata1, "-o", color="indianred") self.ax2.plot(xdataplot, yplotdata2, "-o", color="teal") self.ax.relim() self.ax.autoscale_view() self.setplotparameters() self.ax.set_xlim(xLim, xdataplot[-1] + 2) new_ylim = np.max([yplotdata1[-1], yplotdata2[-1]]) * 1.1 if new_ylim > self.upper_ylim: self.upper_ylim = new_ylim self.ax.set_ylim(yLim, self.upper_ylim) self.ax2.set_ylim(yLim, self.upper_ylim) self.ax.ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) self.ax2.ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) self.figure.canvas.draw() self.figure.canvas.flush_events()
[docs] def setPlotScale(self, scaleLin): """Switches plot scale between logarithmic and linear.""" if scaleLin: self.ax.set_yscale("linear") self.canvas.draw() self.canvas.flush_events() else: self.ax.set_yscale("log") self.canvas.draw() self.canvas.flush_events()